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Abstract
X-ray magnetic circular dichroism experiments on REZn single crystals (RE = Gd, Tb, Dy, Ho
and Er) performed at the rare-earth L2,3 edges show important quadrupolar contributions whose
final states are the empty 4f orbitals. Calculations of the dichroic spectra have been performed
using first-principle calculations with a treatment of the 4f states based on the LSDA + U
(LSDA: local spin density approximation) method and including the spin–orbit coupling. The
good agreement between experimental and calculated spectra allows a detailed analysis of the
quadrupolar and dipolar contributions to the experimental spectra at the rare-earth L edges.
Complementary study of the Zn K edge in HoZn reveals the magnetism induced on the Zn
atoms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With the availability of efficient synchrotron radiation
sources x-ray absorption spectroscopy techniques experience
a successful development. A unique advantage of these
techniques is to provide studies of electronic structures in
complex systems with an element and orbital selectivity.
Among these techniques the x-ray magnetic circular dichroism
(XMCD) measures the difference between the absorption of
left handed and right handed circularly polarized light by a
system with a net magnetization [1]. XMCD is a promising
tool to probe the magnetic polarization of a selected electronic
shell. Indeed with the derivation of the sum rules it is possible
to determine independently the orbital and spin moments of
each shell [2]. Experimentally however, it rapidly turned out
that at some edges the XMCD signal is not straightforwardly
related to the magnetic polarization and that its interpretation is
far more complex than expected. This is the case for instance
at the L2,3 edges of the rare-earths (RE) [3, 4]. At these
edges the dipolar electric transition (E1) of the photo-induced
electron allows probing the empty 5d states. In RE compounds

these states play an important role in mediating the magnetic
interaction. In pure RE metals or intermetallics the 5d states
give rise, together with the 6s shell, to the conduction band
and contribute to high density of states near the Fermi level.
Moreover the 5d wavefunctions are extended enough to present
a considerable overlap between neighboring sites. 5d states
thus strongly contribute to the RKKY interactions between the
local magnetic moment mainly borne by the open inner 4f
shell. In gadolinium metal and many Gd-based intermetallics,
the observed spontaneous magnetic moment is larger than the
expected 7μB. This excess moment is generally attributed to
spin-polarization of the conduction electrons and mainly to the
5d electron polarization. The observation of a non-negligible
diffuse magnetic signal by polarized neutron diffraction in
pure Gd is strongly consistent with this interpretation [5].
In RE-transition metal alloys the 3d–4f coupling is indirect
involving two stages: the 3d–5d and 5d–4f interactions [6].
The rare-earth 5d band can hybridize with the 3d band of
the allied transition metal. This may strongly affect the
magnetic properties of the 3d metal with an onset of the 3d
magnetism only above a critical concentration of the 3d metal,
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as observed in the RE-Co and RE-Ni systems [7]. Probing
the 5d states with XMCD is a valuable technique to get a
deeper insight into the fundamental mechanism controlling the
magnetic interactions in the rare-earth intermetallics.

The interpretation of the XMCD signal at the rare-
earth L2,3 edges has been dealt within a large number of
experimental [3, 4, 8, 9] and theoretical works [10–15].
It is now well established that the XMCD spectra at the
L2,3 edges of rare-earths are not directly related to the
spin density of the unoccupied 5d states, as drawn from
the first single-particle model proposed by Schütz and co-
workers [3], and that the spin-dependence of the matrix
element of the E1 transition cannot be neglected for open 4f
shell ions [11, 8]. In spite of that, the interpretation still
remains matter of debate as recently stressed by Giorgetti
et al [16]. Apparently the structures in the XMCD spectra
may strongly depend on the rare-earth, the compound and
even on the temperature as observed in ErFe2. The value of
the ratio L2:L3 of the XMCD signal is very often different
from the statistical branching ratio, −1, given by the Fano
factors. This suggests that the 5d band states bear an orbital
momentum. The interpretation of the spectra is also hampered
by the existence of structures arising from the quadrupolar
contributions (E2). Since the very beginning, the contribution
of electric quadrupole transitions has been taken into account
in the interpretation of the x-ray resonant magnetic scattering
(XRMS) phenomena at the rare-earth L2,3 edges [17, 18].
As the spin-sensitive absorption is related to the imaginary
part of the resonant scattering amplitude, it was rapidly
pointed out that non-negligible quadrupolar contributions
are present in x-ray magnetic dichroic phenomena at these
edges [10]. In the XMCD spectra, features observed below
the absorption edge are generally ascribed to these 2p–
4f quadrupolar transitions. Unusually in YbFe2, this E2
structure was reported to be in the middle of the dipolar
signal at the Yb L3 edge [19]. Moreover the balance between
dipolar and quadrupolar contributions in the spectra cannot be
straightforwardly quantified. Experimentally the E2 structures
are quite well evidenced at the rare-earth L3 edge, but barely
resolved at the L2 one [8]. In the first simulations of the
XMCD spectra dipolar and quadrupolar parts were evaluated
separately: the dipolar part from first-principle calculations,
the quadrupolar one from atomic-multiplet calculations. The
position in energy of the quadrupolar contribution was taken
as an adjustable parameter [11]. More recently a similar
approach, that calculates separately the E1 (cluster model
calculation) and E2 (full-multiplet calculation) contributions
has been developed by Asakura et al [15] to reproduce the
XMCD spectra in the R2Fe14B series. In this approach the
relative intensity between E2 and E1 transitions was treated
as an adjustable parameter. At the same time Wende et al [9]
have proposed a new, but also indirect, procedure to extract the
E2 contribution from the experimental XMCD spectrum. All
these reasons make difficult the application of the magneto-
optical sum rules at rare-earth L2,3 edges.

XMCD studies at the rare-earth L2,3 edges have been
mainly performed on intermetallics where the allied 3d metal
is magnetic [4, 16]. In these compounds the Fermi level

lies in a region in energy where the rare-earth 5d states are
strongly hybridized with the 3d states of the transition metal.
The photo-electron is probing these hybridized states, then
it is very likely that the magnetic character of the 3d metal
has an influence on the XMCD spectra. This influence is
however not easy to quantify. In the present study the Zn
ions have a closed 3d shell, therefore the relevant hybridization
is only with the unoccupied 4p states of Zn, weakly spin
polarized. Effects due to the only rare-earth ion result from
the local 4f–5d exchange, that generates the spin-dependent
spectral weight [8]. When performed on systems where
only the rare-earth is ferromagnetic, XMCD experiments were
done on polycrystalline samples where the saturation of the
magnetization is not always reached. Indeed, due to the
anisotropy properties, the grains oriented at random often
impede a magnetic saturation in low fields. It is worth
noting that the saturation of the magnetization would insure
a maximal XMCD signal and greatly help for a quantitative
interpretation.

In the present paper we report on XMCD experiments
carried out on oriented single crystals of rare-earth-zinc
compounds at the RE L2,3 absorption edges and also for the
HoZn compound at the K edge of Zn. A systematic study has
been performed on the heavy REZn as a whole that allows
following the relative evolution of dipolar and quadrupolar
contributions to the XMCD spectrum as function of the rare-
earth. Numerical simulations of the XMCD spectra have been
performed with the magnetic fdmnes code [21, 22]. This code,
based on first-principle calculations, includes fully spin–orbit
interactions and relativistic effects and thus allows treating
the magnetic aspects in XANES and related spectroscopies.
Different approaches, multiple scattering (MST) or finite-
difference method (FDM), can be used to calculate the
electronic structure of the probed materials. In the task of
simulating the core spectroscopies, a main difficulty consists
in the calculation of the final states of the photo-electron.
Different approaches can be used depending on the absorbing
atom and the probed edge. The atomic-multiplet approach
is very successful when the final states are localized states
e.g. at the M4,5 edges of lanthanides and actinides or the
L2,3 edges of 3d transition metals. On the contrary at the K
edge the mono-electronic approaches are quite well adapted to
calculate the delocalized finals p states. In the present case
both the delocalized 5d band states, through the E1 transition,
and the highly localized 4f states, through the E2 transition,
are reached by the photo-electron. First-principles methods
have been faced with the difficulty of describing systems with
strong Coulomb correlations as for instance the rare-earth ions.
This is why the LSDA + U method has been developed [23].
Recently the LSDA + U approach has been used successfully
to calculate x-ray resonant magnetic scattering (XRMS) and
XMCD spectra at the L2,3 edges of the rare-earth [24–26]. The
calculations of the XMCD spectra reported in this work were
all performed within the LSDA + U approach, they will be
described in more details in the section 3.

In section 2 are reported the experimental details. The
theoretical approach used for the calculation of the spectra and
details about the calculation code are presented in section 3.
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Table 1. Lattice parameter, Curie temperature, easy axis and
spontaneous magnetization at 10 K in the heavy rare-earth
compounds of the REZn series.

Compound a (Å) TC (K)
Easy axis
(10 K)

Ms (10 K)
(μB)

GdZn 3.602 269 — 7.42
TbZn 3.576 200 [110] 8.93
DyZn 3.563 139 [001] 9.87
HoZn 3.547 75 [110] 8.35
ErZn 3.532 20 [001] 6.57

Section 4 deals with the analysis and comparison between
calculations and experimental results. Preliminary results at
the Zn K edge in HoZn are given in section 5 before to
conclude.

2. Experimental details and results

2.1. Magnetic measurements

The REZn compounds crystallize in a simple cubic CsCl-type
structure (Pm3m) that contains one atom of each specie by unit
cell. They have been intensively studied as they turned out to
be model systems for quadrupolar interactions and magneto-
elastic effects [27]. In these compounds the Zn 3d shell is
full and the magnetic properties come exclusively from the
RE ions. Heavy rare-earth compounds order ferromagnetically
with rather high Curie temperatures as shown in table 1. The
samples used for XMCD measurements are spark-cut single
crystalline disks of 7 mm diameter and 0.5–1 mm height. For
each compound the disk surface was cut perpendicular to the
easy magnetization axis at 10 K, the base temperature of the
XMCD experimental set-up. Prior to XMCD experiments the
magnetization processes of each sample were checked in the
temperature range 2–20 K. The measurements were performed
at the Institut Néel by the extraction method in fields up
to 10 T. The sensitivity of these measurements reaches 5 ×
10−7 Am2. The magnetic field was applied along the easy axis
i.e. perpendicular to the disk surface. The magnetization curves
obtained at 10 K are reported in figure 1. For all samples the
magnetization increases linearly with the field before to reach
the saturation. This linear regime is associated with the domain
wall motion that leads to the single domain phase at which
the magnetization reaches its spontaneous value. The values
of the spontaneous magnetization at 10 K reported in table 1
compare quite well with those previously reported by Morin
et al [27]. Increasing the field a slight superposed susceptibility
is observed in HoZn and ErZn. This superposed susceptibility
becomes larger when the temperature of the measurements gets
closer to the Curie temperature. The decrease of the Curie
temperature from GdZn to ErZn is ascribed to the decrease
of the 4f spin value (see table 2). For GdZn the spontaneous
magnetization at 10 K is larger than the saturated 4f magnetic
moment expected for the trivalent ion at 0 K (see table 2). As
for pure Gd, this may be ascribed to the spin-polarization of
the 5d conduction electrons. On the contrary for all the other
compounds the spontaneous magnetization remains smaller
than the expected saturated moment (table 2). This is due to the

Figure 1. Magnetization processes at 10 K for the five studied REZn
compounds. The magnetization is given in Bohr magneton per RE
ion.

Table 2. Number of 4f electrons, values of the spin, orbital and total
angular momenta for the ground multiplet of the trivalent heavy RE
free ions. Columns six and seven give respectively the Lande factor
and the saturated magnetic moment, μs = gJ J .

RE ion n4f S4f L4f J gJ μs (0 K) (μB)

Gd3+ 7 7/2 0 7/2 2 7
Tb3+ 8 3 3 6 3/2 9
Dy3+ 9 5/2 5 15/2 4/3 10
Ho3+ 10 2 6 8 5/4 10
Er3+ 11 3/2 6 15/2 6/5 9

reduction of the magnetic moment by the crystalline electric
field that acts on L �= 0 RE ions [27].

2.2. XMCD measurements

The XMCD experiments have been carried out at the ESRF
ID12 beamline optimized for polarization-dependent x-ray
absorption fine structure studies [28]. The source of circularly
polarized photons was the Helios II Undulator, which allows
flipping the helicity of the photon beam after each energy
scan. The incident energy is selected by a pair of Si〈111〉
crystals. In the energy range of the RE L2,3 absorption
edges, polarimetry experiments have found that the circular
polarization rate is 88% [29]. The samples were mounted
on the cold finger of a liquid-helium cryostat inserted in a
superconducting cryomagnet. For all samples the experiments
were performed at 10 K under a field of 3 T, applied along
the easy magnetization axis. According to the magnetization
curves in figure 1, under 3 T the samples are all in the single
domain phase. In this configuration, the XMCD signal is
expected to reach its maximum amplitude. All x-ray absorption
near edge structure (XANES) spectra discussed in the present
paper were collected in the total x-ray fluorescence detection
mode. Due to well-known saturation/self-absorption effects,
fluorescence yield spectra are not linearly proportional to x-ray
absorption spectra. A rather simple homographic transform of
the fluorescence data was systematically used to restore spectra

3
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Figure 2. Calculated (full line) and experimental (full dots) XANES
signals at the Gd L3 edge in GdZn. The dotted line and open dots
represent the calculated and experimental XMCD signals
respectively. The experimental spectrum energy has been shifted by
the electron binding energy E0 = 7243 eV.

proportional to the absorption coefficient (see [30]). XMCD
spectra were obtained as a direct difference of the corrected
XANES spectra recorded with opposite helicity of incoming
x-rays. The convention adopted by all experimentalists is
XMCD = σ−(right) − σ+(left) with the magnetic field parallel
to the wavevector of the photons. Before performing any
normalization it was checked that for each rare-earth the
L3 absorption edge step is twice that at the L2. Then
the L2 XANES spectra are normalized to the height of the
absorption edge step while the L3 ones are normalized to the
half of the step height (see for instance figure 2). Within
this normalization we recover the actual ratios 1:2 and −1:1
for the L2:L3 XANES and XMCD ratios respectively. The
experimental XMCD spectra at the RE L2,3 edges are reported
in figure 3. To achieve a reliable comparison between
calculated and experimental spectra and also to reduce the
number of parameters it is important to define a commune
origin in energy, E0. In the present work the origin E0 is
the value of the tabulated electron binding energy for the
selected edge [31]. From Gd to Er, experimental spectra
show a progressive decrease of the signal centered around
+5 eV, at both the L3 and L2 edges, while at the L3 a
positive structure increases in the lowest-energy part of the
spectra.

3. Theory

3.1. Cross section and tensorial approaches

In a mono-electronic description, such as in the LSDA +
U approach, the normalized atomic absorption cross section
which stands as well for absorption or XMCD is given by:

σ =
∑

f i

|〈ψ f |Ô|ψi 〉|2δ(h̄ω − (E f − Ei )) (1)

whereψi andψ f are respectively the ground and photo-excited
states, Ô the interacting operator between the electromagnetic

Figure 3. Calculated (full and dashed lines) and experimental (open
dots and open diamonds) dichroic signals at the RE L2,3 edges in the
REZn series. At the L3 edge, the increasing structure when going
from Gd to Er, located in the lowest-energy part of the spectrum is
definitively ascribed to the quadrupole–quadrupole (E2–E2)
contribution. For all the spectra E0 is the value of the tabulated
electron binding energy for the respective edges [31].

field and the material, h̄ω the photon energy and δ(h̄ω−(E f −
Ei)) the state density. In the following, this term will be
included in the normalization of the final photo-excited state
and thus will not appear anymore. The un-normalized cross
sections contain an additional factor 4π2αh̄ω, where α is the
fine structure constant. The purpose of the present paper being
a comparative study at the L2 and L3 edges, the normalized
cross section is more convenient. Indeed, in absence of spin–
orbit in the final state and of multi-electronic phenomena, the
ratio L2:L3 of the XANES and of the XMCD spectra would
have to be respectively 1:2 and −1:1, at least in the usually
dominant dipole–dipole (E1–E1) channel [32].

In the present case there is only one atom of each chemical
specie in the unit cell, thus no summation on atoms or
symmetry operation must be added to the previous formula
to get the unit mesh cross section. In the x-ray regime, the
magnetic part of the electromagnetic field can be neglected
and the operator Ô is reduced to its electric part. It is usually
written through the multipolar expansion of this electric field
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up to the quadrupole term:

Ô = �ε · �r
(

1 − 1
2 i�k · �r

)
(2)

where �r is the electron position measured from the absorbing
ion, �ε the polarization of the photon and �k its corresponding
wavevector.

The tensor approach is very useful to expand the formula
of the cross section (equation (1)) on the Cartesian polarization
and wavevector components:

σ =
∑

αβ

ε∗
αεβDαβ − i

2

∑

αβγ

ε∗
αεβkγ (Iαβγ − I ∗

βαγ )

+ 1
4

∑

αβγ δ

ε∗
αεβkγ kδQαβγ δ (3)

where α, β , γ and δ are Cartesian coordinate labels and
Dαβ , Iαβγ and Qαβγ δ , the dipole–dipole (E1–E1), dipole–
quadrupole (E1–E2) and quadrupole–quadrupole (E2–E2)
contributions, respectively. Their explicit expressions are given
by:

Dαβ =
∑

f i

〈ψi |rα|ψ f 〉〈ψ f |rβ |ψi 〉

Iαβγ =
∑

f i

〈ψi |rα|ψ f 〉〈ψ f |rβrγ |ψi 〉

Qαβγ δ =
∑

f i

〈ψi |rαrβ |ψ f 〉〈ψ f |rγ rδ|ψi 〉.

(4)

The dipole–quadrupole (E1–E2) only probes the projection on
the absorbing atoms of the hybridized odd–even states. Thus
they are zero in the centro-symmetric materials of the present
study.

To get the cross sections as a function of the atomic
amplitudes, we first expand the initial and final states on
spherical waves. For this we use the (�,m, σ ) basis where �
and m are the usual quantum numbers and σ stands for the
spin. s is an index on the two independent solutions we get due
to the complete treatment of the Dirac equation. Neglecting
spin–orbit interaction s and σ could be merged, but here we
keep the complete formulation, thus the initial and final states
are given by:

ψi =
∑

σ

Gσ
i Y

mi +σ− 1
2

�i
g(r)χσ

ψ f =
∑

�ms

a f
�ms

∑

σ

Y
m+σ− 1

2
� bσ s

�m+σ− 1
2
(r)χσ

(5)

Gσ
i is a constant, χσ is the spin projection, g(r) and

bσ s
�m+σ− 1

2
(r) are the initial and final state radial functions. The

a f
�ms are the amplitudes of the spherical harmonics of the

different final states. They are calculated by continuity using
any method of calculation providing the electronic structure
of the material. In the field, the multiple scattering theory
(MST) is certainly the most famous but any other method of
calculation, in direct or reciprocal space, can be used as well.
The a f

�ms contain all the information on the spin and electronic
structure on the absorbing atom.

To be complete, one has also to expand the rα or rβrγ
operators in the spherical base. We note these terms ro, where
o indexes any of the operator types. In this way we get:

ro =
∑

mo

co
�omo

Y mo
�o

r �o (6)

where �o is 1 and 2 for the E1 and E2 transitions respectively.
Including the expressions (5) and (6) in the equation (4) we
get the general form for any component Too′ of the Cartesian
tensors:

Too′ =
∑

momo′
co
�omo

co′
�o′ mo′

∑

iσ

χσ (G
σ
i )

2

×
∑

�m�′m′
′ ∑

ss ′
Rσ s
�m Rσ s ′∗

�′m′
∑

f

a f
�msa f ∗

�′m′s ′ (7)

where  are the Gaunt coefficients and Rσ s
�m = 〈bσ s

�m+σ− 1
2
(r)

|r lo |g(r)〉 are the radial integrals. The optical theorem shows
that the last part of the equation is nothing else than the
imaginary part of the multiple scattering amplitude:

∑

f

a f
�msa f ∗

�′m′s ′ = −Im(τ �
′m′s ′
�ms ). (8)

We will also use the spherical tensors which are more
useful to express the measurements in term of observable. The
spherical tensors can be calculated from the Cartesian ones.
The general expression for the absorption cross section is then:

σ =
∑

�=0,2

(−1)�+m Pm
� Dm

�

+
∑

�=1,3

(−1)�+m(Pm
� I m

� + Pm′
� I m′

� )

+
∑

�=0,4

(−1)�+m Pm
� Qm

� (9)

where the first, second and third summations correspond to
respectively the (E1–E1), (E1–E2) and (E2–E2) channels. Dm

� ,
I m
� and Qm

� are the corresponding scattering tensors. Pm
�

is the polarization-wavevector tensor also expressed in the
spherical bases. For the (E1–E2) channel the magnetic terms
are separated from the electric ones. They are the tensors noted
with a prime. For (E1–E1) and (E2–E2), � = 0, 1, 2, 3 and
4 corresponds respectively to the electric monopole, magnetic
dipole, electric quadrupole, magnetic octupole and electric
hexadecapole. We must stress that one shall not confuse
the terms of ‘dipole’ and ‘quadrupole’ used here with the
dipolar (E1) and quadrupolar (E2) electric transitions that
correspond to the expansion in k of the photon electric field
(see equation (2)). Equation (9) accounts for the non-isotropic
scattering processes arising from the crystal anisotropy. At
the K edge the magnetic dipole is a direct measurement of the
density of the orbital magnetic moment (mainly carried by the
p states). At the L2,3 edges it is related in a more complex way
to the density of the spin moment, the orbital moment and a
third expectation value related to the anisotropy of the field of
the spins. Nevertheless the sum over the L2,3 edges is, as for
the K edge, only proportional to the orbital magnetic moment
of the d states, at least for the (E1–E1) transition [2]. Note

5
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however that for the rare-earths, the difference in the spin-up
and spin-down 5d radial functions makes that the ratio between
the square of the modulus of the radial integral, |Rσ s

�m |2, and
〈bσ s
�m+σ− 1

2
(r)|bσ s

�m+σ− 1
2
(r)〉, are different for spin-up and spin-

down (the so-called ‘breathing effect’). The consequence is
that the sum rules at the L2,3 edges of the rare-earths are
not very precise to determine the 5d orbital moment. In
the present work we calculate precisely the matrix elements
but at the present stage our purpose was not the quantitative
determination of the orbital moment of the final 5d states. It
is worth noting that this determination is the main object of
an unambiguous interpretation of the XMCD spectra. For the
(E2–E2) channel, due to the more complex selection rule, the
sum over the L2,3 edges is proportional with different weights
to the partial orbital magnetic moments.

In XMCD, the signal is the difference of the cross section
between right (σ−) and left (σ+) polarizations. In the cubic
ferromagnetic REZn compounds, quite all tensors are thus
eliminated. Choosing the z axis along the spin direction one
gets respectively for the XMCD and absorption cross sections:

σ− − σ+ = −√
2D0

1 − 1√
10

Q0
1 +

√
8

35
Q0

3 (10)

1

2
(σ+ + σ−) = 1√

3
D0

0 + 1√
20

Q0
0 −

√
2

35
Q0

4. (11)

The expression of the XMCD in equation (10) reduces to three
terms, it follows that the XMCD can probe only few of the
different physical parameters. The fact that the remaining
terms correspond to the m = 0 projection of � means that the
z axis remain a symmetry axis. The summation over the L2

and L3 edges of the first term D0
1 gives the projection along

z of the magnetic orbital moment carried by the occupied
5d levels (with the limitation due to the breathing effect as
noted above). The same summation of the second, Q0

1, and
third, Q0

3, terms will give the projection of the 4f magnetic
orbital moment and the 4f magnetic octupole respectively.
The magnetic octupole is an expansion at higher order of the
current around the absorbing atom. Note also that, due to
the radial and angular integrals (Rσ s

�m and  in equation (7)),
a factor strongly different between the (E1–E1) and (E2–
E2) channels, should be applied in order to get the magnetic
moments in conventional units. From the absorption cross
section defined by equation (11) it is possible to probe the
isotropic (or monopole) (E1–E1) and (E2–E2) channels and the
electric hexadecapole. This last contribution has been detected
in pyrite, but at the iron K edge. Unfortunately, the very short
hole lifetime in present experiments cannot allow a quantitative
detection of this contribution.

3.2. Calculation of the final states

The calculations of the final states are performed using the
local spin density approximation corrected by the Hubbard
term (LSDA + U ) to better account for the effects of the
strong Coulomb interactions on the 4f rare-earth levels [23].
This correction cannot be neglected at the rare-earth L2,3 edges
because the final states of the quadrupolar transitions are the 4f

empty states. At these edges however the important broadening
makes that the detailed multi-electronic features are not visible
in the experimental spectra. Nevertheless the position in energy
of the quadrupolar component with respect to the dipolar one
is an important issue and a good evaluation of this position
requires the Hubbard correction. In the present study the
effective on-site interaction parameter, Ueff = U − J , was
kept at 6 eV for all the rare-earth ions. This is a reasonable
value for the 4f on-site exchange–correlation interactions in the
corresponding rare-earth metals and alloys [23, 26, 33]. The
typical U quoted for 4f is between 6 and 9 eV. Due to the
experimental resolution, the intrinsic broadening and the fact
that we work at the L2,3 edges, far less sensitive than the M4,5

ones, this value is adequate to reach a convenient agreement.
A few cycles of calculations are sufficient to get the occupancy
matrix, ρσmm′ , of the different f levels, where σ stands for the
spin and m and m ′ for the third atomic quantum number. In
practice the choice of the convenient basis makes that only
the diagonal terms (m = m ′) are not zero. Following the
Dudarev et al scheme [34], the correction induced by Ueff in
the one-electron potential matrix of the 4f states is given by:

� V σ
mm′ = Ueff

(
1
2δmm′ − ρσmm′

)
. (12)

The Fermi level is found inside the ‘gap’ opened by
the Hubbard correction between the 4f states. The total
electronic density being rather low within this region in
energy the position of the Fermi level is obtained with
an uncertainty of the order of 1 eV. Such an uncertainty
may be a strong limitation when calculating some physical
properties. In the present case however it does not affect
the calculation of the dichroic spectra. It was checked that
a quite good agreement between calculated and experimental
spectra is reached following this procedure. Neglecting the
Hubbard correction, instead, and seeking agreement with
the experimental spectra by adjusting the occupation of the
4f levels would lead to a systematic overestimation by 0.2
electrons of the nominal number of 4f electrons for trivalent
rare-earth ions. From the calculated electronic structure
the XANES and XMCD cross sections are evaluated at any
energy. As the photo-electron can reach only empty states, the
calculated spectra reported in figures 2–4 and 6 are obtained by
canceling the transitions to the occupied states before making
the convolution.

3.3. Convolution

The formulae given in the previous chapter stand for complex
potentials. Often it is more convenient to keep a real
potential, and to account for the core-hole and final state
lifetimes by a Lorentzian convolution afterward. The 4f levels
being extremely narrow in energy, it is usual for numerical
convenience to introduce a very small imaginary part to the
energy (≈0.1 eV) to avoid an infinitely small energy grid
of calculation. In a second step the usual convolution is
performed. This later one is energy dependent: it increases
from the edge where the values spread from 3.8 eV for
gadolinium to 4.1 eV for erbium. At 40 eV above the edge, the
width reaches typically 14 eV. A consequence of this relatively
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0

Figure 4. Summation over the L2 and L3 edges of the calculated
(dash dot line) and experimental (open circles) dichroic signal in
ErZn. The contribution of the different components, D0

1 (solid line),
Q0

1 (dashed line) and Q0
3 (dash dot dot line) to the calculated signal

are also reported. The Q0
1 component related to the 4f orbital

magnetic moment along z, is the dominant contribution to the signal.

strong broadening is that an important part of the information
is lost. Also taking into account properly this broadening is one
of the difficulties in the present study. Care must be taken in
the width determination because the XMCD spectra oscillate
around the zero line, being alternatively positive and negative
as function of the energy. Thus over or underestimations of
the width lead consequently to a global XMCD signal itself
under or overestimated. As it is not the case for the XANES
spectra, the ratio between XMCD and XANES may be also
affected. It is worth noting that the XMCD/XANES ratio
should be respected.

3.4. About the calculation code

We have performed the numerical simulations with the
ab initio magnetic code implemented in the fdmnes
package [21, 22]. This code uses different approaches based on
the multiple scattering theory (MST) or on the finite-difference
method (FDM) to calculate the electronic structure of the
involved materials. Magnetic effects are treated through a
relativistic extension of the Schrödinger equation built without
any approximation from the Dirac equation. Thus it includes
fully spin–orbit interactions and relativistic effects [21]. It also
includes now the Hubbard correction. The code also permits
an analysis of the multipolar scattering tensors providing thus
a useful information on the physical variables that give rise to
the observed signal.

The cubic REZn compounds are highly symmetric and
dense materials. In this case, non-muffin-tin effects are known
to be small, thus the MST approach, which uses the muffin-tin
approximation for the shape of the potential can be preferred to
the FDM. Indeed, the MST approach is more economical and
permits calculations with bigger clusters. It has been checked
that both methods of calculation, the MST and the FDM, give
close results. For all compounds clusters of 8 Å radius were
used. They include more than 110 atoms and the convergence
is then perfectly achieved. The specific parameters in the

muffin-tin approximation: the atomic sphere radius and the
interstitial potential, were calculated in the same way for all
compounds, thus avoiding extra and dangerous parameters.
The interstitial potential is chosen as the average potential
between the atomic spheres. The atomic sphere radii were
chosen in order to minimize the potential jumps between the
different areas of calculation and with a 10% overlap.

4. Analysis of the rare-earth L2,3 edges

4.1. Comparison with experiment

For each compound, the normalization between experiment
and calculation is carried out in order to equalize the calculated
XANES spectra at 30 eV above the edges. At this energy the
XANES signal at the L3 edge is twice as large as the one at
the L2 edge. Note that accordingly the origin of the energy
for calculated XANES spectra is taken at beginning of the
absorption edge in order to coincide with the origin of the
experimental energy. The same normalization factor is thus
applied to both the XMCD and XANES signals. Figure 2
gives an illustration of this normalization procedure at the Gd
L3 edge in GdZn. It is worth noting that this normalization
allows comparing the XMCD amplitude between the different
compounds. Calculated and experimental XMCD spectra
are compared in the figure 3. At each absorption edge
the amplitude and the evolution of the dichroic signal as
function of the rare-earth are reproduced with a very satisfying
agreement. Calculations account well for the decrease of the
main amplitude around 5 eV when going from gadolinium to
erbium. In the whole energy range the differences in shape
between the L2 and L3 edges are also nicely reproduced.
At the L3 edge, the progressive rising of the structure at
the lowest-energy part is well reproduced with a particularly
good quantitative agreement for the Ho and Er compounds.
Calculations confirm that this structure is strictly of (E2–E2)
origin and thus probes the 4f states.

As shown in figure 3 the L2:L3 XMCD ratios are very far
from the theoretical statistical branching ratio value, −1, that
does not take into account the spin–orbit and multi-electronic
phenomena. Present calculations account for the spin–
orbit coupling and for the on-site correlations and electronic
interaction effects but not for the interaction with the core-hole.
The good agreement between experiments and calculations
emphasizes the role of the spin–orbit at the L edges of the
rare-earth. This result is fully consistent with the recent work
by Kim et al [32] that points out the key role of the spin–
orbit coupling in the 5d band in accounting for the L2:L3

experimental branching ration in both the XRMS and the
XMCD.

4.2. Magnetic moment analysis

It was shown in section 3 that XMCD probes the magnetic
moments, spin and/or orbital moments, carried by the selected
electronic shell of the absorbing atom. For the ErZn compound
we compare in figure 4 the summation over the L2,3 edges of
the three tensors, D0

1 , Q0
1 and Q0

3 with that of the experimental
XMCD signal. A quite good agreement is again observed

7
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between calculation and experiment. figure 4 brings a clear
confirmation of the (E2–E2) origin of the XMCD signal in
the lowest-energy part of the spectrum at the L2,3 edges in
ErZn. Quantitatively, the Q0

1 contribution, that is the partial
4f orbital magnetic moment along the easy spin direction, is
2 times larger than the 4f magnetic octupole Q0

3. The integral
over the energy of D0

1 gives the total orbital moment of the Er
5d level. This integral is close to zero.

Due to the selection rules and the different values of the
corresponding factors, the Q0

1 contribution for the (E2–E2)
channel, which is the dominant one, is related to the individual
density of the 4f orbital moments with different weights on the
different orbitals. It is not exactly proportional to the total
density of orbital moment as it is in the (E1–E1) channel.
For example the orbital moment of the m = ±3 orbitals is
not accessible at all. Thus, the quantitative interpretation of
the measurement in term of orbital moment remains tricky.
Anyway, starting from the equations (7) and (8), neglecting
the energy overlap between the spin-up and spin-down states
(what is close to the truth in the present case) and using the
known values of the different Clebch–Gordon factors we can
reach to simple new formula. For this we also consider that
the imaginary part of the multiple scattering amplitudes is
proportional to the density of state ρσm where σ = ↑ or ↓ stands
for the spin. Then, considering only the 4f states one gets for
the XMCD signal at the L2 and L3 edges:

σL2 ∝ 10ρ↑
−2 + 4(ρ↑

−1 − ρ
↑
1 )− 3ρ↑

0

− 10ρ↓
2 + 4(ρ↓

−1 − ρ
↓
1 )+ 3ρ↓

0 (13)

σL3 ∝ 5ρ↑
−2 − 15ρ↑

2 + 8(ρ↑
−1 − ρ

↑
1 )+ 3ρ↑

0

+ 15ρ↓
−2 − 5ρ↓

2 + 8(ρ↓
−1 − ρ

↓
1 )− 3ρ↓

0 . (14)

Thus for the sum over the 2 edges one gets:

σL2 + σL3 ∝ 15(ρ↑
−2 + ρ

↓
−2)+ 12(ρ↑

−1 + ρ
↓
−1)

− 12(ρ↑
1 + ρ

↓
1 )− 15(ρ↑

2 + ρ
↓
2 ). (15)

The combined spin–orbit and cluster effects make that the
different |m, σ 〉 4f states are spread and these equations cannot
be simplified. Also equations (13) and (14) show that the
m = ±3 levels are not probed by the dichroic measurements
at both the L2 and L3 edges. In absence of spin–orbit coupling,
the different ρσm stand at the same energy for each spin σ , these
equations simplify to the classical ones easy to exploit to get
the total moment. Then one gets for the dichroic signal at the
L2 and L3 edges:

σL2 ∝ ρ↑ − ρ↓ (16)

σL3 ∝ −ρ↑ + ρ↓ (17)

where ρσ is now the total density of state for the spin σ . If
equations (16) and (17) apply one would observe the same
Q0

1 contribution at the L2 and L3 edges but with opposite
sign. This is never the case even for GdZn where the total
orbital moment of the Gd is zero and for which the density
of empty 4f states is maximum. Indeed for this compound
the quadrupolar contribution vanishes as shown in figure 3.
Actually, as it will be shown in the following, the spin–orbit
cannot be neglected as the dichroic signal depends on the spin–
orbit coupling at each energy in the empty states. This is

Figure 5. ErZn and GdZn compounds: lower part, partial density of
states for the 4f orbitals. The spin–orbit coupling spreads the
different 4f states, while the Hubbard correction splits the occupied
and unoccupied states. The exchange–correlation splitting value is
≈11 eV and ≈6 eV for Gd and Er respectively. The Fermi level is
found inside this gap its position is shown by an arrow. Upper part,
dichroic cross section for the (E2–E2) and (E1–E1) processes
calculated for all the finals states at the L2 (dashed lines) and L3

(solid lines) edges. The final spectra reported in the other figures are
obtained by canceling first the transitions towards the occupied states
beneath the Fermi level and second making the convolution.

illustrated in figure 5 where are reported the partial densities
of states of the 4f orbitals around the Fermi level for GdZn
and ErZn. Depending on the quantum number m, the 4f
levels are spread in each sub-band. At the higher-energy
stands the |−3,↓〉 level, then decreasing the energy come
|−2,↓〉, |−1,↓〉, and so on. In GdZn the exchange–correlation
splitting between occupied spin-up and unoccupied spin-down
4f orbitals is found of the order of 11 eV in fully consistency
with previous results [23, 33]. For heavier rare-earths the 4f
levels are spread in a more complex way because the Fermi
level stands within the down states. In ErZn for instance the
gap opened by the Hubbard term in the spin-down orbitals is of
the order of 6 eV. In a schematic view the Hubbard correction
yields a shift of ≈−U/2 for the occupied spin-down states and
≈+U/2 for the unoccupied ones.

The XMCD probes only the states above EF which, for the
studied compounds, are spin-down states. In GdZn these states
are spread, from m = 3 to −3, within a thin energy range
(≈1 eV). As shown in figure 5 (according to equations (13)
and (14)) some m states give a positive contribution to the
XMCD cross section, while others give a negative one. This
finally results in an oscillatory theoretical curve as function
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Figure 6. TbZn and DyZn compounds: calculated (full and dot
dashed lines) and experimental (open and full dots) dichroic signals
at the RE L2,3 edges. The calculations have been performed
assuming an overlap of 50% between the |3,↓〉 and |2,↓〉 orbitals
and the |2,↓〉 and |1,↓〉 orbitals for Tb and Dy respectively. At the
L3 edge, it is compared with the calculation assuming the nominal
occupation of the 4f orbitals (dashed line). At the L2 edge not
perceptible difference is observed between both calculations.

of the energy at both the L2 and L3 edges. To reproduce
the experimental spectra it is necessary to account for an
important broadening of the structures mainly due to the core-
hole lifetime (≈3.8 eV). The convolution for GdZn makes that
the positive and negative parts collapse leading to a very small
final signal. In ErZn only the |−3,↓〉, |−2,↓〉 and |−1,↓〉
levels are unoccupied (see figure 5). Thus the XMCD signal
is quite only due to the moment brought by the |−2,↓〉 and
|−1,↓〉 orbitals. At the L3 edge according to equation (14)
the signal becomes maximum because both contributions add
and have a big coefficient. Despite the broadening a strong
quadrupolar contribution to the XMCD is visible. At the L2 on
the contrary the |−2,↓〉 does not contribute (see equation (13))
explaining the very small (E2–E2) effect at this edge. Now
when decreasing Z , that is emptying the 4f orbitals, the |0,↓〉
then the |1,↓〉 and so on progressively contribute. These
terms have the opposite sign (see equations (13) and (14)) and
subtract to the previous contributions, consequently the signal
decreases. From these considerations we can understand the
evolution of the (E2–E2) contribution in the spectra. Coming
back to figure 3 it can be seen that for TbZn, the (E2–E2)
structure calculated at the L3 edge is less pronounced than the
experimental observation. For the Tb the last occupied level is
the |3,↓〉 orbital. According to equations (13) and (14), the
m = ±3 levels do not intervene in the XMCD signal thus
calculations lead to the same E2 contribution than for Gd, that
actually is not observed. Assuming an overlap between the last
occupied and first non-occupied nominal levels (for instance
the |3,↓〉 and |2,↓〉 orbitals in Tb) the (E2–E2) structure
can be calculated more intense and the agreement between
the calculated and experimental spectra improved. This is
illustrated in figure 6 for Tb and Dy. That best results are
obtained for an occupation of the 4f orbitals different from the
nominal one is quite surprising. Rather than an artifact this can

be a consequence of the interaction with the core-hole during
the absorption process.

To be complete, one also has to mention another parameter
which perturbs the direct comparison between the L2 and L3

edges. The (E2–E2) signal being proportional to the square of
the photon wavevector, an extra factor equal to the square of
the ratio of the photon energy at the L3 and L2 edges must be
considered. This factor is around 1.2 for the present rare-earth.
It is not a true problem in the present study because the (E2–
E2) contribution in the L2 edge remains very small.

The strength of the (E1–E1) signal around 5 eV, at both
the L2 and L3 thresholds, reflects the spin-polarization of the
unoccupied 5d states. In the REZn compounds, these states are
conduction states and their polarization results from the local
4f–5d exchange. The progressive decrease, when increasing Z ,
of the (E1–E1) signal is fully in agreement with the decrease
of the 4f spin (see table 2). One may remark that for this
dipole transitions the L3:L2 branching ratio of our experimental
data has a quite different trend than the ones reported in
references [12, 24, 32]. Actually the origin of such a difference
remains unknown. Though the L2 XMCD signal is calculated
systematically larger than the experimental one, the simulated
XMCD spectra account well for the overall trend of the dipolar
part of the experimental spectra.

It is quite surprising that such a good agreement between
experiment and calculation is obtained with a relatively simple
fully relativistic LSDA+U approach. Indeed as soon as highly
localized 4f states are involved more complex approaches are
in principal required to take into account the interaction with
the core-hole. Paradoxically this is due to the fact that the
photo-electron probes an excited environment. In absence of
a complete theory including multi-electronic and multi-atomic
phenomena for x-ray absorption spectroscopy, and according
to the fact that the interaction between the core and final states
is less strong at the L2,3 edges than at the M4,5 ones, most of
the core-hole effects can be simulated by the calculation of a
self-consistent atomic potential for the absorbing atom (this
one is then embedded in the total potential) and by a wide
broadening that accounts for its short lifetime. Consequently
the details due to the 4f states are visible neither in the
experimental spectra nor in the simulations. Nevertheless, the
simulation reproduces very well the trend of the spectra when
changing the rare-earth. Thus the scheme of the spreading of
the different 4f levels versus the quantum number m must be
globally true. The fact that, using a fully relativistic LSDA+U
approach, to calculate the XMCD at the rare-earth L2,3 edges
gives a satisfactory agreement is for us an interesting result
by itself. Note also that the present approach handles both
the dipolar and quadrupolar contributions on all the XANES
energy range with satisfactory relative amplitudes between
these channels. It also gives directly the position of the (E2–
E2) contribution below the energy of the main dipolar one.
Quadrupolar transitions to localized states arising at lower
energy than dipolar transitions, is a general fact reproduced by
the mono-electronic approach with no need of extra parameter.
It is also true at the K edge of the 3d elements. In previous
works, that use the multiplet approach to account for the (E2–
E2) contribution, the position of the E2 peak relative to the E1
peak was treated as an adjustable parameter [11].
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Figure 7. Calculated (dashed and full lines) and experimental (full
and open dots) XANES and XMCD spectra at the Zn K edge in
HoZn. The XMCD spectra are multiplied by 25. The calculated one
has been further multiplied by 5 in order to be comparable to the
experimental one.

5. Calculation of the zinc K edge in HoZn

Complementary measurements were performed at the K edge
of Zinc in HoZn. At the K edge XMCD probes the polarization
of the unoccupied p states of the selected element. Because
there is no spin–orbit in the 1s initial state, the observed XMCD
signal is due only to the spin–orbit coupling in the final p states.
Consequently the XMCD signal at this edge is far smaller than
at the L2,3 edges. Despite the fact that the Zn 4p states are
very delocalized conduction states and that the Zn ions bear
no intrinsic magnetic moment (the Zn 3d shell is completely
filled up), a non-negligible and structured signal is measured
at the Zn K edge in HoZn (see figure 7). A previous work
performed on rare-earth–cobalt intermetallics, had stressed the
significant contribution of the 5d states of the rare-earth to the
XMCD signal at the K edge of magnetic Co [35]. The present
observation at the K edge of a non-magnetic element clearly
confirms these first results. Simulations of the XANES and
XMCD signals have been performed starting from the same
initial conditions and with the same convolution procedure
than for the simulations at the L2,3 edges. The normalization
between experiment and calculation was carried out in the
same way than at the rare-earth L edges. Figure 7 shows
a global agreement between the experimental and calculated
XANES spectra. For clarity, the XMCD spectra are multiplied
by 25 in figure 7. The calculated XMCD signal is five times
smaller than the experimental one, in the figure it has been
multiplied by this supplementary factor. The structures just
above the edge are rather well reproduced by the calculation
but the agreement becomes unsatisfactory at higher energies.
As said before the convolution width is of crucial importance
for a good simulation of the spectra, thus some discrepancies
may partly be removed by optimizing it. However at this stage
the factor 5 between the calculated and experimental dichroic
spectra is not understood.

6. Conclusion

Experimental and theoretical studies of the XMCD have been
performed at the L2,3 thresholds of the rare-earth in the REZn
compounds. The XANES and XMCD spectra have been
calculated with the ab initio fdmnes code. This code allows
accounting for the relativistic effect and especially for the
spin–orbit coupling. The potential has been calculated within
the muffin-tin approach and clusters of more than 110 atoms
have been used. At the L2,3 edges the simulations compare
remarkably well with the experimental spectra. The analysis of
the multipolar scattering tensors brings a quantitative evidence
of the origin, (E1–E1) or (E2–E2), of the different features in
the spectra. At the L3 edge our study unambiguously confirms
the (E2–E2) origin of the positive structure observed just at
the edge. It explains also why this (E2–E2) contribution is
less intense at the L2 edge. The results obtained at the Zn
K edge in HoZn are less satisfactory at least for the XMCD
spectrum. The fact that the calculated signal is 5 times smaller
than the experimental one is still an open question. This points
out the difficulties encountered in theoretical approach when
accounting for very delocalized conduction states.
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